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1 Objetivo de la tarea

El objetivo de esta tarea es aplicar los conocimientos basicos de programacion orientada a objetos en JavaScript,
haciendo uso de las clases definidas en ES6. En particular, se evaluaré el uso de:

e herencia entre clases

o encapsulacion mediante propiedades privadas

o getters y setters usando las palabras clave get y set
o métodos estaticos

¢ validacién de datos

Para ello se definird una jerarquia de clases que represente un equipo de Hyperloop.

2 Entregar

Se debe entregar un tnico archivo de JavaScript (. js) que contenga la solucién completa a la tarea.

3 Realizacion de la tarea

El archivo JavaScript debe estar claramente dividido en dos partes:

¢ la implementacién de clases, donde se definiran todas las clases necesarias
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¢ la zona de uso, donde se utilizardan las clases previamente definidas
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3.1 Implementacién de clases
Todas las clases deberan definirse utilizando la sintaxis de clases ES6, haciendo uso correcto de:

e class

e extends

e super

« propiedades privadas (usando #)
o getters y setters (get y set)

e métodos estaticos

3.1.1 Clase Person
Debe contener:

o propiedad privada name
e propiedad privada dni
¢ Se puede obtener tanto el nombre como el DNI, pero solo se puede modificar el nombre
o El constructor recibira:
— un nombre
— un NUMERO de DNI
¢ El constructor debera calcular automaticamente la letra del DNI siguiendo el algoritmo oficial:
https://www.interior.gob.es/opencms/es/servicios-al-ciudadano/tramites-y-gestiones/dni/calculo-del-
digito-de-control-del-nif-nie/
e Métodos y accesos:
— getter name
— setter name
— getter dni
— método getInfo() que devuelva un string con el nombre y el DNI completo
Si los datos introducidos no son vélidos, se lanzard un Error

3.1.2 Clase Member (clase hija de Person)
Representa a un miembro del equipo de Hyperloop.
Debe contener:

e propiedad privada department
e propiedad privada yearsExperience

3.1.2.1 Departamentos validos
Los tnicos departamentos permitidos son:

e "Managment"

e "Operaciones"

e "Avionics"

¢ "Electromagnetics"
¢ "Mechanics"

No se permitird ningtin otro valor.

3.1.2.2 Requisitos adicionales

e La propiedad department:
— se accedera mediante:
* getter department
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* setter department

o El setter validara que el departamento sea valido
o yearsExperience debe ser un ntimero mayor o igual que 0

3.1.2.3 Meétodo estatico obligatorio
La clase Member debe incluir el siguiente método estatico:

o isValidDepartment (department)
— devuelve true si el departamento es valido
— devuelve false en caso contrario

— deberé utilizarse tanto en el constructor como en el setter de department

3.1.2.4 Métodos publicos

e getter yearsExperience
e método getInfo():
— sobrescribe el método de Person
— incluye el departamento y los afios de experiencia

3.1.3 Clase Engineer (clase hija de Member)
Representa a un ingeniero del equipo.
Debe contener:

e propiedad privada specialty

e La especialidad serd un string no vacio
3.1.3.1 Accesos y métodos

e getter specialty
e método getInfo():
— sobrescribe el método anterior
— incluye la especialidad del ingeniero

3.1.4 Clase Team
Representa el equipo completo de Hyperloop.
Debe contener:

e propiedad privada members, que serd un array de objetos Member

3.1.4.1 Meétodos publicos

e addMember (member)
— solo permite anadir objetos que sean instancia de Member
e removeMemberByDni (dni)
e listMembers()
— muestra por consola la informacién de todos los miembros del equipo
e countMembersByDepartment (department)
— devuelve cuantos miembros pertenecen a un determinado departamento

3.2 Zona de uso
En la zona de uso del archivo JavaScript se debe:

e Crear al menos:
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— 2 objetos Engineer de departamentos distintos
— 1 objeto Member que no sea ingeniero
e Crear un objeto Team
¢ Afadir los miembros al equipo
o Utilizar explicitamente:
— getters
— setters
— el método estatico de validacion
e Mostrar por consola:
— el listado completo del equipo
— el niimero de miembros por departamento
e Probar al menos un caso incorrecto:
— por ejemplo, asignar un departamento no valido
— o intentar afadir un objeto que no sea Member
e Demostrar que el error se gestiona correctamente
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4 Apéndice: comprobaciones y errores en JavaScript (NECE-
SARIO PARA LA TAREA)

En el desarrollo de la tarea pueden aparecer algunas comprobaciones y mecanismos de control de errores
que es necesario saber implementar por cuenta propia. Su inclusién tiene como objetivo facilitar la
robustez del cédigo, y forman parte de los contenidos evaluables de la tarea.

4.1 Uso de Error

Cuando se detecta una situacién incorrecta (por ejemplo, un valor no valido o un uso indebido de una clase),
se puede lanzar un error utilizando:

throw new Error("Mensaje de error");

Esto indica claramente que algo no es correcto y detiene la ejecucion normal del programa.

4.2 Uso de instanceof
El operador instanceof se utiliza para comprobar si un objeto ha sido creado a partir de una clase concreta.

objeto instanceof Clase

Devuelve true si el objeto pertenece a esa clase y false en caso contrario.

4.3 Uso de typeof

El operador typeof permite comprobar el tipo de datos simples como strings o niimeros.

typeof variable

Ejemplos:

typeof "texto" // "string"
typeof 10 // "number"

Se utiliza para validar los datos recibidos por constructores o setters. Para comprobar clases u objetos
personalizados debe usarse instanceof, no typeof.
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