Training Center Software

TAI: La objetizacion de las personas

Javier Ribal del Rio

2025-12-20
Table of contents
1 Objetivo de la tarea 1
2 Entregar 1

3 Realizacion de la tarea 1
3.1 Implementacién de clases L 2
3.1.1 Clase Person v v vt 2

3.1.2 Clase Member (clase hija de Person) 2

3.1.3 Clase Engineer (clase hija de Member) 3

3.1.4 Clase Team ottt i it e 3

3.2 Zonade USO e e 3

4 Apéndice: comprobaciones y errores en JavaScript (NECESARIO PARA LA TAREA) 4
4.1 Usode ETTor 0 i e e e e e 4
4.2 Usode instanceof e e e 4
4.3 Usode typeof e 4

1 Objetivo de la tarea

El objetivo de esta tarea es aplicar los conocimientos basicos de programacion orientada a objetos en JavaScript,
haciendo uso de las clases definidas en ES6. En particular, se evaluaré el uso de:

e herencia entre clases

o encapsulacion mediante propiedades privadas

o getters y setters usando las palabras clave get y set
o métodos estaticos

¢ validacién de datos

Para ello se definird una jerarquia de clases que represente un equipo de Hyperloop.

2 Entregar

Se debe entregar un tnico archivo de JavaScript (. js) que contenga la solucién completa a la tarea.

3 Realizacion de la tarea

El archivo JavaScript debe estar claramente dividido en dos partes:

¢ la implementacién de clases, donde se definiran todas las clases necesarias

Javier Ribal del Rio Hyperloop UPV 1

4

¢ la zona de uso, donde se utilizardan las clases previamente definidas

Training Center Software

3.1 Implementacién de clases
Todas las clases deberan definirse utilizando la sintaxis de clases ES6, haciendo uso correcto de:

e class

e extends

e super

« propiedades privadas (usando #)
o getters y setters (get y set)

e métodos estaticos

3.1.1 Clase Person
Debe contener:

o propiedad privada name
e propiedad privada dni
¢ Se puede obtener tanto el nombre como el DNI, pero solo se puede modificar el nombre
o El constructor recibira:
— un nombre
— un NUMERO de DNI
¢ El constructor debera calcular automaticamente la letra del DNI siguiendo el algoritmo oficial:
https://www.interior.gob.es/opencms/es/servicios-al-ciudadano/tramites-y-gestiones/dni/calculo-del-
digito-de-control-del-nif-nie/
e Métodos y accesos:
— getter name
— setter name
— getter dni
— método getInfo() que devuelva un string con el nombre y el DNI completo
Si los datos introducidos no son vélidos, se lanzard un Error

3.1.2 Clase Member (clase hija de Person)
Representa a un miembro del equipo de Hyperloop.
Debe contener:

e propiedad privada department
e propiedad privada yearsExperience

3.1.2.1 Departamentos validos
Los tnicos departamentos permitidos son:

e "Managment"

e "Operaciones"

e "Avionics"

¢ "Electromagnetics"
¢ "Mechanics"

No se permitird ningtin otro valor.

3.1.2.2 Requisitos adicionales

e La propiedad department:
— se accedera mediante:
* getter department

Javier Ribal del Rio Hyperloop UPV 2

Training Center Software

* setter department

o El setter validara que el departamento sea valido
o yearsExperience debe ser un ntimero mayor o igual que 0

3.1.2.3 Meétodo estatico obligatorio
La clase Member debe incluir el siguiente método estatico:

o isValidDepartment (department)
— devuelve true si el departamento es valido
— devuelve false en caso contrario

— deberé utilizarse tanto en el constructor como en el setter de department

3.1.2.4 Métodos publicos

e getter yearsExperience
e método getInfo():
— sobrescribe el método de Person
— incluye el departamento y los afios de experiencia

3.1.3 Clase Engineer (clase hija de Member)
Representa a un ingeniero del equipo.
Debe contener:

e propiedad privada specialty

e La especialidad serd un string no vacio
3.1.3.1 Accesos y métodos

e getter specialty
e método getInfo():
— sobrescribe el método anterior
— incluye la especialidad del ingeniero

3.1.4 Clase Team
Representa el equipo completo de Hyperloop.
Debe contener:

e propiedad privada members, que serd un array de objetos Member

3.1.4.1 Meétodos publicos

e addMember (member)
— solo permite anadir objetos que sean instancia de Member
e removeMemberByDni (dni)
e listMembers()
— muestra por consola la informacién de todos los miembros del equipo
e countMembersByDepartment (department)
— devuelve cuantos miembros pertenecen a un determinado departamento

3.2 Zona de uso
En la zona de uso del archivo JavaScript se debe:

e Crear al menos:

Javier Ribal del Rio Hyperloop UPV

4

— 2 objetos Engineer de departamentos distintos
— 1 objeto Member que no sea ingeniero
e Crear un objeto Team
¢ Afadir los miembros al equipo
o Utilizar explicitamente:
— getters
— setters
— el método estatico de validacion
e Mostrar por consola:
— el listado completo del equipo
— el niimero de miembros por departamento
e Probar al menos un caso incorrecto:
— por ejemplo, asignar un departamento no valido
— o intentar afadir un objeto que no sea Member
e Demostrar que el error se gestiona correctamente

Training Center Software

4 Apéndice: comprobaciones y errores en JavaScript (NECE-
SARIO PARA LA TAREA)

En el desarrollo de la tarea pueden aparecer algunas comprobaciones y mecanismos de control de errores
que es necesario saber implementar por cuenta propia. Su inclusién tiene como objetivo facilitar la
robustez del cédigo, y forman parte de los contenidos evaluables de la tarea.

4.1 Uso de Error

Cuando se detecta una situacién incorrecta (por ejemplo, un valor no valido o un uso indebido de una clase),
se puede lanzar un error utilizando:

throw new Error("Mensaje de error");

Esto indica claramente que algo no es correcto y detiene la ejecucion normal del programa.

4.2 Uso de instanceof
El operador instanceof se utiliza para comprobar si un objeto ha sido creado a partir de una clase concreta.

objeto instanceof Clase

Devuelve true si el objeto pertenece a esa clase y false en caso contrario.

4.3 Uso de typeof

El operador typeof permite comprobar el tipo de datos simples como strings o niimeros.

typeof variable

Ejemplos:

typeof "texto" // "string"
typeof 10 // "number"

Se utiliza para validar los datos recibidos por constructores o setters. Para comprobar clases u objetos
personalizados debe usarse instanceof, no typeof.

Javier Ribal del Rio Hyperloop UPV 4

	Objetivo de la tarea
	Entregar
	Realización de la tarea
	Implementación de clases
	Clase Person
	Clase Member (clase hija de Person)
	Clase Engineer (clase hija de Member)
	Clase Team

	Zona de uso

	Apéndice: comprobaciones y errores en JavaScript (NECESARIO PARA LA TAREA)
	Uso de Error
	Uso de instanceof
	Uso de typeof

