
Training Center Software

TAI: La objetización de las personas

Javier Ribal del Río

2025-12-20

Table of contents
1 Objetivo de la tarea 1

2 Entregar 1

3 Realización de la tarea 1
3.1 Implementación de clases . 2

3.1.1 Clase Person . 2
3.1.2 Clase Member (clase hija de Person) . 2
3.1.3 Clase Engineer (clase hija de Member) . 3
3.1.4 Clase Team . 3

3.2 Zona de uso . 3

4 Apéndice: comprobaciones y errores en JavaScript (NECESARIO PARA LA TAREA) 4
4.1 Uso de Error . 4
4.2 Uso de instanceof . 4
4.3 Uso de typeof . 4

1 Objetivo de la tarea
El objetivo de esta tarea es aplicar los conocimientos básicos de programación orientada a objetos en JavaScript,
haciendo uso de las clases definidas en ES6. En particular, se evaluará el uso de:

• herencia entre clases
• encapsulación mediante propiedades privadas
• getters y setters usando las palabras clave get y set
• métodos estáticos
• validación de datos

Para ello se definirá una jerarquía de clases que represente un equipo de Hyperloop.

2 Entregar
Se debe entregar un único archivo de JavaScript (.js) que contenga la solución completa a la tarea.

3 Realización de la tarea
El archivo JavaScript debe estar claramente dividido en dos partes:

• la implementación de clases, donde se definirán todas las clases necesarias

Javier Ribal del Río Hyperloop UPV 1

Training Center Software

• la zona de uso, donde se utilizarán las clases previamente definidas

3.1 Implementación de clases
Todas las clases deberán definirse utilizando la sintaxis de clases ES6, haciendo uso correcto de:

• class
• extends
• super
• propiedades privadas (usando #)
• getters y setters (get y set)
• métodos estáticos

3.1.1 Clase Person

Debe contener:

• propiedad privada name
• propiedad privada dni
• Se puede obtener tanto el nombre como el DNI, pero solo se puede modificar el nombre
• El constructor recibirá:

– un nombre
– un NÚMERO de DNI

• El constructor deberá calcular automáticamente la letra del DNI siguiendo el algoritmo oficial:
https://www.interior.gob.es/opencms/es/servicios-al-ciudadano/tramites-y-gestiones/dni/calculo-del-
digito-de-control-del-nif-nie/

• Métodos y accesos:
– getter name
– setter name
– getter dni
– método getInfo() que devuelva un string con el nombre y el DNI completo

• Si los datos introducidos no son válidos, se lanzará un Error

3.1.2 Clase Member (clase hija de Person)

Representa a un miembro del equipo de Hyperloop.

Debe contener:

• propiedad privada department
• propiedad privada yearsExperience

3.1.2.1 Departamentos válidos

Los únicos departamentos permitidos son:

• "Managment"
• "Operaciones"
• "Avionics"
• "Electromagnetics"
• "Mechanics"

No se permitirá ningún otro valor.

3.1.2.2 Requisitos adicionales

• La propiedad department:
– se accederá mediante:

∗ getter department

Javier Ribal del Río Hyperloop UPV 2

Training Center Software

∗ setter department
• El setter validará que el departamento sea válido
• yearsExperience debe ser un número mayor o igual que 0

3.1.2.3 Método estático obligatorio

La clase Member debe incluir el siguiente método estático:

• isValidDepartment(department)
– devuelve true si el departamento es válido
– devuelve false en caso contrario
– deberá utilizarse tanto en el constructor como en el setter de department

3.1.2.4 Métodos públicos

• getter yearsExperience
• método getInfo():

– sobrescribe el método de Person
– incluye el departamento y los años de experiencia

3.1.3 Clase Engineer (clase hija de Member)

Representa a un ingeniero del equipo.

Debe contener:

• propiedad privada specialty
• La especialidad será un string no vacío

3.1.3.1 Accesos y métodos

• getter specialty
• método getInfo():

– sobrescribe el método anterior
– incluye la especialidad del ingeniero

3.1.4 Clase Team

Representa el equipo completo de Hyperloop.

Debe contener:

• propiedad privada members, que será un array de objetos Member

3.1.4.1 Métodos públicos

• addMember(member)
– solo permite añadir objetos que sean instancia de Member

• removeMemberByDni(dni)
• listMembers()

– muestra por consola la información de todos los miembros del equipo
• countMembersByDepartment(department)

– devuelve cuántos miembros pertenecen a un determinado departamento

3.2 Zona de uso
En la zona de uso del archivo JavaScript se debe:

• Crear al menos:

Javier Ribal del Río Hyperloop UPV 3

Training Center Software

– 2 objetos Engineer de departamentos distintos
– 1 objeto Member que no sea ingeniero

• Crear un objeto Team
• Añadir los miembros al equipo
• Utilizar explícitamente:

– getters
– setters
– el método estático de validación

• Mostrar por consola:
– el listado completo del equipo
– el número de miembros por departamento

• Probar al menos un caso incorrecto:
– por ejemplo, asignar un departamento no válido
– o intentar añadir un objeto que no sea Member

• Demostrar que el error se gestiona correctamente

4 Apéndice: comprobaciones y errores en JavaScript (NECE-
SARIO PARA LA TAREA)

En el desarrollo de la tarea pueden aparecer algunas comprobaciones y mecanismos de control de errores
que es necesario saber implementar por cuenta propia. Su inclusión tiene como objetivo facilitar la
robustez del código, y forman parte de los contenidos evaluables de la tarea.

4.1 Uso de Error

Cuando se detecta una situación incorrecta (por ejemplo, un valor no válido o un uso indebido de una clase),
se puede lanzar un error utilizando:
throw new Error("Mensaje de error");

Esto indica claramente que algo no es correcto y detiene la ejecución normal del programa.

4.2 Uso de instanceof

El operador instanceof se utiliza para comprobar si un objeto ha sido creado a partir de una clase concreta.
objeto instanceof Clase

Devuelve true si el objeto pertenece a esa clase y false en caso contrario.

4.3 Uso de typeof

El operador typeof permite comprobar el tipo de datos simples como strings o números.
typeof variable

Ejemplos:
typeof "texto" // "string"
typeof 10 // "number"

Se utiliza para validar los datos recibidos por constructores o setters. Para comprobar clases u objetos
personalizados debe usarse instanceof, no typeof.

Javier Ribal del Río Hyperloop UPV 4

	Objetivo de la tarea
	Entregar
	Realización de la tarea
	Implementación de clases
	Clase Person
	Clase Member (clase hija de Person)
	Clase Engineer (clase hija de Member)
	Clase Team

	Zona de uso

	Apéndice: comprobaciones y errores en JavaScript (NECESARIO PARA LA TAREA)
	Uso de Error
	Uso de instanceof
	Uso de typeof

