
Training Center Software

Repaso Intensivo JS

Javier Ribal del Río

2025-12-12

Table of contents
1 Variables y tipos básicos 2

1.1 Declaración de variables . 2
1.2 Uso de const . 2

1.2.1 const no significa inmutable . 3
1.3 Tipado dinámico . 3

2 null vs undefined 3

3 Aritmética y operadores 3
3.1 Operadores aritméticos . 3

3.1.1 Potencias . 3
3.2 Strings y concatenación . 4
3.3 Comparación . 4
3.4 Operadores lógicos . 4
3.5 Comparaciones . 4
3.6 Operadores lógicos . 4

4 Estructuras de control 4
4.1 Condicionales . 4
4.2 Bucles . 5

4.2.1 while . 5
4.2.2 for . 5

5 Funciones 5
5.1 Función clásica . 5
5.2 Funciones flecha y orden superior . 5
5.3 Funciones propias de strings . 5
5.4 Funciones flecha . 6
5.5 Funciones como ciudadanos de primera clase . 6

6 Arrays (base) 6
6.1 Acceso . 6
6.2 Adiciones . 6
6.3 Eliminaciones . 6

7 Objetos 6
7.1 Modificación . 7
7.2 Acceso dinámico . 7

8 Referencias vs valores 7
8.1 Copia por valor . 7

Javier Ribal del Río Hyperloop UPV 1

Training Center Software

8.2 Copia por referencia . 7

9 Spread operator (...) 7
9.1 Arrays . 8
9.2 Objetos . 8

10 Funciones de array (JS moderno) 8
10.1 Datos de partida . 8
10.2 Función cuadrado . 8
10.3 map: transformar elementos . 8
10.4 filter: seleccionar elementos . 8
10.5 Encadenamiento (estilo declarativo) . 8

Contenido

Repaso intensivo de JavaScript, tiene como objetivo dar una introducción del lenguaje, a usuarios que ya
tengan experiencia previa programando.

Descargar archivo de código (click derecho guardar enlace como)

1 Variables y tipos básicos
1.1 Declaración de variables
En JavaScript moderno se utilizan let y const (evitar var).

• let: permite reasignación
• const: no permite reasignación
• const NO significa inmutable
• JavaScript es de tipado dinámico
• El tipo depende del valor, no de la variable

Tipos primitivos:

• string
• number
• boolean
• null
• undefined

let edad = 12; // number
let altura = 1.8; // number
let nombre = "Javier"; // string
let casado = false; // boolean

let ordenador = null; // ausencia intencionada de valor
let direccion; // undefined

1.2 Uso de const

const dni = "1235678L";
dni = "23"; // Error

Javier Ribal del Río Hyperloop UPV 2

intensivo.js

Training Center Software

1.2.1 const no significa inmutable

const dni = "12345678L";
dni = "87654321X"; // Error

Pero:
const arr = [1, 2, 3];
arr.push(4); // permitido

1.3 Tipado dinámico
• JavaScript es de tipado dinámico
• El tipo depende del valor, no de la variable
• Una variable puede cambiar de tipo durante la ejecución

let x = "hola";
x = 42; // válido
x = true; // válido

Este comportamiento se conoce como shadowing o cambio dinámico de tipo. En el ejemplo anterior solo
existe una variable X cuyo tipo pasa de Number a boolean

2 null vs undefined
• undefined: variable declarada pero sin valor
• null: ausencia intencionada de valor

JavaScript distingue entre:

“todavía no hay valor” y “no hay valor”
console.log(ordenador); // null
console.log(direccion); // undefined

3 Aritmética y operadores
3.1 Operadores aritméticos

let a = 12, b = 4;

a + b
a - b
a * b
a / b
a % b

a = a + b;
a += b;
a -= b;
a *= b;

3.1.1 Potencias

a**b // Power

Javier Ribal del Río Hyperloop UPV 3

Training Center Software

Incrementos:
b--; b++;
--b; ++b;

3.2 Strings y concatenación

a = "hola ";
b = "mundo";
a + b;

3.3 Comparación
• == compara valor (evitar)
• === compara valor y tipo (usar)

3.4 Operadores lógicos
• && AND
• || OR
• ! NOT

3.5 Comparaciones
• == compara solo valor (evitar)
• === compara valor y tipo (usar siempre, aunque sea innecesario)

5 == "5"; // true
5 === "5"; // false

3.6 Operadores lógicos
• && AND
• || OR
• ! NOT

(a > 0) && (b < 10)

4 Estructuras de control
4.1 Condicionales

if (a === b) {

} else if (a > b) {

} else {

}

Javier Ribal del Río Hyperloop UPV 4

Training Center Software

4.2 Bucles
4.2.1 while

let x = 20;
while (x < 50) {

x += 10;
}

4.2.2 for

for (let i = 0; i < 10; i++) {
// iteración

}

5 Funciones
• Encapsulan lógica reutilizable
• Pueden recibir parámetros
• Pueden devolver valores
• Son ciudadanos de primera clase

5.1 Función clásica

function sumar2(num, num2 = 2) {
num += num2;
return num;

}

Paso de variables por valor:
let a = 7;
let b = sumar2(a, a); // 14
a; // 7

5.2 Funciones flecha y orden superior

const concatenarHola = input => input + " Hola";
concatenarHola("sdf");

function ejecuta(fun) {
fun();

}

ejecuta(() => { console.log("hola"); });

5.3 Funciones propias de strings

let a = "jsadfsadf ";
a.trim(); // Suprimir espacios adicionales
a.split('a'); // Divide el string en un array c
a.length;

Javier Ribal del Río Hyperloop UPV 5

Training Center Software

5.4 Funciones flecha

const cuadrado = n => n ** 2;

Forma extendida:
const cuadrado = (n) => {

return n ** 2;
};

5.5 Funciones como ciudadanos de primera clase
Las funciones pueden:

• Asignarse a variables
• Pasarse como argumentos
• Devolverse como resultado

function ejecutar(f) {
f();

}

ejecutar(() => console.log("Hola"));

6 Arrays (base)
• Lista ordenada
• Índices empiezan en 0
• Propiedad length

let cajon = [8, "hola", true, () => { return 7 }];

6.1 Acceso

cajon[0] // 8
cajon[2] = "rino"; // modificamos la entrada 2

6.2 Adiciones

cajon.push(false);
cajon.unshift(0);

6.3 Eliminaciones

cajon.pop();
cajon.shift();

cajon.length;

7 Objetos
Un objeto representa una entidad mediante estructura clave–valor.

Javier Ribal del Río Hyperloop UPV 6

Training Center Software

let gente = { pepe: 7, juanes: 8, andreas: 10, fran: [4, 2] };

7.1 Modificación

gente.andreas = 32;
gente.pepe++;

7.2 Acceso dinámico

let nombre = "pablo";

gente.nombre; // undefined
gente[nombre] = 2; // añade propiedad

8 Referencias vs valores
8.1 Copia por valor

let a = 5;
let b = a;
b++;

a no cambia.

8.2 Copia por referencia

let e3 = ["juan", "pepe"];
let d = e3;

d.push("andrés");

Ambas variables apuntan al mismo array.
const poblacion = gente;
poblacion["julio"] = 8;

La copia por refencia se aplica a objetos y arrays
let x = ["juan", "pepe"];
let y = x;

y.push("andrés"); // Se añade en x e y pues son el mismo objeto

Ambas variables apuntan al mismo objeto.

9 Spread operator (...)
• Expande arrays u objetos
• Permite copiar y combinar
• Copia superficial

Javier Ribal del Río Hyperloop UPV 7

Training Center Software

9.1 Arrays
Javier es añadido a arr2, pero no a arr.
let arr = ["Alice", "Bob", "Kevin"];
let arr2 = [...arr, "Javier"];

9.2 Objetos
Ocurre lo mismo con los objetos
const sociedad = { ...poblacion, julia: 12 };

10 Funciones de array (JS moderno)
Vamos a trabajar con un ejemplo completo, típico en programación funcional.

10.1 Datos de partida

let y = [2, 4, 6, 7];

10.2 Función cuadrado

Definimos una función que, dado un número, devuelve su cuadrado:
const cuadrado = n => n ** 2;

Es equivalente a:
const cuadrado = (n) => {

return n ** 2;
};

10.3 map: transformar elementos
Aplicamos map para obtener un nuevo array con los cuadrados:
const y2 = y.map(cuadrado);

Resultado:
[4, 16, 36, 49]

10.4 filter: seleccionar elementos
Definimos una función que comprueba si un número es par:
const even = n => n % 2 === 0;

La usamos con filter:
const yEven = y.filter(even);

10.5 Encadenamiento (estilo declarativo)
Podemos encadenar ambas operaciones:

Javier Ribal del Río Hyperloop UPV 8

Training Center Software

y
.map(n => n ** 2)
.filter(n => n % 2 === 0);

Este estilo es declarativo: describimos qué queremos hacer con los datos, no cómo recorrerlos.

Javier Ribal del Río Hyperloop UPV 9

	Variables y tipos básicos
	Declaración de variables
	Uso de const
	const no significa inmutable

	Tipado dinámico

	null vs undefined
	Aritmética y operadores
	Operadores aritméticos
	Potencias

	Strings y concatenación
	Comparación
	Operadores lógicos
	Comparaciones
	Operadores lógicos

	Estructuras de control
	Condicionales
	Bucles
	while
	for

	Funciones
	Función clásica
	Funciones flecha y orden superior
	Funciones propias de strings
	Funciones flecha
	Funciones como ciudadanos de primera clase

	Arrays (base)
	Acceso
	Adiciones
	Eliminaciones

	Objetos
	Modificación
	Acceso dinámico

	Referencias vs valores
	Copia por valor
	Copia por referencia

	Spread operator (...)
	Arrays
	Objetos

	Funciones de array (JS moderno)
	Datos de partida
	Función cuadrado
	map: transformar elementos
	filter: seleccionar elementos
	Encadenamiento (estilo declarativo)

