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tengan experiencia previa programando.
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1 Variables y tipos básicos
1.1 Declaración de variables
En JavaScript moderno se utilizan let y const (evitar var).

• let: permite reasignación
• const: no permite reasignación
• const NO significa inmutable
• JavaScript es de tipado dinámico
• El tipo depende del valor, no de la variable

Tipos primitivos:

• string
• number
• boolean
• null
• undefined

let edad = 12; // number
let altura = 1.8; // number
let nombre = "Javier"; // string
let casado = false; // boolean

let ordenador = null; // ausencia intencionada de valor
let direccion; // undefined

1.2 Uso de const

const dni = "1235678L";
dni = "23"; // Error
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1.2.1 const no significa inmutable

const dni = "12345678L";
dni = "87654321X"; // Error

Pero:
const arr = [1, 2, 3];
arr.push(4); // permitido

1.3 Tipado dinámico
• JavaScript es de tipado dinámico
• El tipo depende del valor, no de la variable
• Una variable puede cambiar de tipo durante la ejecución

let x = "hola";
x = 42; // válido
x = true; // válido

Este comportamiento se conoce como shadowing o cambio dinámico de tipo. En el ejemplo anterior solo
existe una variable X cuyo tipo pasa de Number a boolean

2 null vs undefined
• undefined: variable declarada pero sin valor
• null: ausencia intencionada de valor

JavaScript distingue entre:

“todavía no hay valor” y “no hay valor”
console.log(ordenador); // null
console.log(direccion); // undefined

3 Aritmética y operadores
3.1 Operadores aritméticos

let a = 12, b = 4;

a + b
a - b
a * b
a / b
a % b

a = a + b;
a += b;
a -= b;
a *= b;

3.1.1 Potencias

a**b // Power
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Incrementos:
b--; b++;
--b; ++b;

3.2 Strings y concatenación

a = "hola ";
b = "mundo";
a + b;

3.3 Comparación
• == compara valor (evitar)
• === compara valor y tipo (usar)

3.4 Operadores lógicos
• && AND
• || OR
• ! NOT

3.5 Comparaciones
• == compara solo valor (evitar)
• === compara valor y tipo (usar siempre, aunque sea innecesario)

5 == "5"; // true
5 === "5"; // false

3.6 Operadores lógicos
• && AND
• || OR
• ! NOT

(a > 0) && (b < 10)

4 Estructuras de control
4.1 Condicionales

if (a === b) {

} else if (a > b) {

} else {

}
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4.2 Bucles
4.2.1 while

let x = 20;
while (x < 50) {

x += 10;
}

4.2.2 for

for (let i = 0; i < 10; i++) {
// iteración

}

5 Funciones
• Encapsulan lógica reutilizable
• Pueden recibir parámetros
• Pueden devolver valores
• Son ciudadanos de primera clase

5.1 Función clásica

function sumar2(num, num2 = 2) {
num += num2;
return num;

}

Paso de variables por valor:
let a = 7;
let b = sumar2(a, a); // 14
a; // 7

5.2 Funciones flecha y orden superior

const concatenarHola = input => input + " Hola";
concatenarHola("sdf");

function ejecuta(fun) {
fun();

}

ejecuta(() => { console.log("hola"); });

5.3 Funciones propias de strings

let a = "jsadfsadf ";
a.trim(); // Suprimir espacios adicionales
a.split('a'); // Divide el string en un array c
a.length;
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5.4 Funciones flecha

const cuadrado = n => n ** 2;

Forma extendida:
const cuadrado = (n) => {

return n ** 2;
};

5.5 Funciones como ciudadanos de primera clase
Las funciones pueden:

• Asignarse a variables
• Pasarse como argumentos
• Devolverse como resultado

function ejecutar(f) {
f();

}

ejecutar(() => console.log("Hola"));

6 Arrays (base)
• Lista ordenada
• Índices empiezan en 0
• Propiedad length

let cajon = [8, "hola", true, () => { return 7 }];

6.1 Acceso

cajon[0] // 8
cajon[2] = "rino"; // modificamos la entrada 2

6.2 Adiciones

cajon.push(false);
cajon.unshift(0);

6.3 Eliminaciones

cajon.pop();
cajon.shift();

cajon.length;

7 Objetos
Un objeto representa una entidad mediante estructura clave–valor.
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let gente = { pepe: 7, juanes: 8, andreas: 10, fran: [4, 2] };

7.1 Modificación

gente.andreas = 32;
gente.pepe++;

7.2 Acceso dinámico

let nombre = "pablo";

gente.nombre; // undefined
gente[nombre] = 2; // añade propiedad

8 Referencias vs valores
8.1 Copia por valor

let a = 5;
let b = a;
b++;

a no cambia.

8.2 Copia por referencia

let e3 = ["juan", "pepe"];
let d = e3;

d.push("andrés");

Ambas variables apuntan al mismo array.
const poblacion = gente;
poblacion["julio"] = 8;

La copia por refencia se aplica a objetos y arrays
let x = ["juan", "pepe"];
let y = x;

y.push("andrés"); // Se añade en x e y pues son el mismo objeto

Ambas variables apuntan al mismo objeto.

9 Spread operator (...)
• Expande arrays u objetos
• Permite copiar y combinar
• Copia superficial
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9.1 Arrays
Javier es añadido a arr2, pero no a arr.
let arr = ["Alice", "Bob", "Kevin"];
let arr2 = [...arr, "Javier"];

9.2 Objetos
Ocurre lo mismo con los objetos
const sociedad = { ...poblacion, julia: 12 };

10 Funciones de array (JS moderno)
Vamos a trabajar con un ejemplo completo, típico en programación funcional.

10.1 Datos de partida

let y = [2, 4, 6, 7];

10.2 Función cuadrado

Definimos una función que, dado un número, devuelve su cuadrado:
const cuadrado = n => n ** 2;

Es equivalente a:
const cuadrado = (n) => {

return n ** 2;
};

10.3 map: transformar elementos
Aplicamos map para obtener un nuevo array con los cuadrados:
const y2 = y.map(cuadrado);

Resultado:
[4, 16, 36, 49]

10.4 filter: seleccionar elementos
Definimos una función que comprueba si un número es par:
const even = n => n % 2 === 0;

La usamos con filter:
const yEven = y.filter(even);

10.5 Encadenamiento (estilo declarativo)
Podemos encadenar ambas operaciones:
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y
.map(n => n ** 2)
.filter(n => n % 2 === 0);

Este estilo es declarativo: describimos qué queremos hacer con los datos, no cómo recorrerlos.
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