
Training Center Software

MA: Clases ES6

Javier Ribal del Río

2025-12-13

Table of contents
1 Programación orientada a objetos en JavaScript 1

2 Definición de una clase 2
2.1 Sintaxis básica . 2

3 Creación de instancias 2

4 Métodos de instancia 2

5 Métodos vs funciones flecha 3

6 Propiedades públicas 3

7 Getters y setters 3

8 Herencia (extends) 4

9 Sobrescritura de métodos 4

10 Uso de super en métodos 4

11 Métodos estáticos 4

12 Campos privados (#) 5

13 Clases y objetos literales 5

14 Clases prototípicas (pre-ES6) 6

Contenido

Repaso intensivo de clases en JavaScript (ES6+), orientado a usuarios con experiencia previa en progra-
mación y familiarizados con funciones, objetos y arrays.

1 Programación orientada a objetos en JavaScript
JavaScript es un lenguaje basado en prototipos, pero desde ES6 introduce la sintaxis class, que:

• Es azúcar sintáctico sobre el sistema de prototipos
• Facilita la escritura y lectura de código OO
• No convierte a JS en un lenguaje basado en clases clásicas

Javier Ribal del Río Hyperloop UPV 1

Training Center Software

2 Definición de una clase
2.1 Sintaxis básica

class Persona {
constructor(nombre, edad) {

this.nombre = nombre;
this.edad = edad;

}
}

• class: palabra clave
• constructor: método especial de inicialización
• this: referencia a la instancia actual

3 Creación de instancias

const p1 = new Persona("Javier", 45);
const p2 = new Persona("Ana", 32);

• new crea un nuevo objeto
• Ejecuta automáticamente constructor

4 Métodos de instancia
Los métodos se definen sin function y se comparten vía prototipo.
class Persona {

constructor(nombre, edad) {
this.nombre = nombre;
this.edad = edad;

}

saludar() {
return `Hola, soy ${this.nombre}`;

}

cumple() {
this.edad++;

}
}

Uso:
p1.saludar();
p1.cumple();

Javier Ribal del Río Hyperloop UPV 2

Training Center Software

5 Métodos vs funciones flecha
No usar arrow functions como métodos de clase (salvo casos concretos):
class MalEjemplo {

metodo = () => {
console.log(this);

};
}

• Rompe el modelo prototípico
• Mayor consumo de memoria

6 Propiedades públicas
Las propiedades se suelen declarar en el constructor:
class Coche {

constructor(marca, km = 0) {
this.marca = marca;
this.km = km;

}
}

Uso:
const c = new Coche("Toyota");
c.km += 100;

7 Getters y setters
Permiten acceder como propiedades a lógica encapsulada.
class Rectangulo {

constructor(ancho, alto) {
this.ancho = ancho;
this.alto = alto;

}

get area() {
return this.ancho * this.alto;

}

set escala(factor) {
this.ancho *= factor;
this.alto *= factor;

}
}

Uso:
const r = new Rectangulo(2, 3);
r.area; // 6

Javier Ribal del Río Hyperloop UPV 3

Training Center Software

r.escala = 2;
r.area; // 24

8 Herencia (extends)
JavaScript soporta herencia simple.
class Empleado extends Persona {

constructor(nombre, edad, salario) {
super(nombre, edad);
this.salario = salario;

}

salarioAnual() {
return this.salario * 12;

}
}

• extends: herencia
• super(): llama al constructor padre (obligatorio)

9 Sobrescritura de métodos

class Empleado extends Persona {
saludar() {

return `Empleado: ${this.nombre}`;
}

}

• Si el método existe en la clase hija, sobrescribe al del padre

10 Uso de super en métodos

class Empleado extends Persona {
saludar() {

return super.saludar() + " (empleado)";
}

}

Permite reutilizar lógica del padre.

11 Métodos estáticos
Pertenecen a la clase, no a las instancias.

Javier Ribal del Río Hyperloop UPV 4

Training Center Software

class Utilidades {
static suma(a, b) {

return a + b;
}

}

Uso:
Utilidades.suma(2, 3);

No accesible desde instancias:
new Utilidades().suma; // undefined

12 Campos privados (#)
Introducidos en ES2022.
class Cuenta {

#saldo = 0;

ingresar(cantidad) {
this.#saldo += cantidad;

}

getSaldo() {
return this.#saldo;

}
}

• #saldo es realmente privado
• No accesible fuera de la clase

13 Clases y objetos literales
Esto:
const a = {

x: 1,
inc() { this.x++; }

};

Es equivalente conceptualmente a una instancia única.

Usar class cuando:

• Hay múltiples instancias
• Existe estado y comportamiento común
• Se necesita herencia o abstracción

Javier Ribal del Río Hyperloop UPV 5

Training Center Software

14 Clases prototípicas (pre-ES6)
JavaScript siempre ha sido un lenguaje basado en prototipos. Antes de ES6, la creación de objetos y
herencia se realizaba mediante funciones constructoras y el prototipo.

En este repaso no entraremos en detalle en este modelo.

Basta con saber que:

• Las clases ES6 no sustituyen al modelo prototípico
• Son una capa de abstracción sobre él
• Todo el comportamiento sigue resolviéndose vía prototipos

Para profundizar:

• https://developer.mozilla.org/es/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
function Persona(nombre) {
this.nombre = nombre;
}

Persona.prototype.saludar = function () {
return this.nombre;
};

vs
class Persona {

constructor(nombre) {
this.nombre = nombre;

}

saludar() {
return this.nombre;

}
}

Javier Ribal del Río Hyperloop UPV 6

https://developer.mozilla.org/es/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

	Programación orientada a objetos en JavaScript
	Definición de una clase
	Sintaxis básica

	Creación de instancias
	Métodos de instancia
	Métodos vs funciones flecha
	Propiedades públicas
	Getters y setters
	Herencia (extends)
	Sobrescritura de métodos
	Uso de super en métodos
	Métodos estáticos
	Campos privados (#)
	Clases y objetos literales
	Clases prototípicas (pre-ES6)

