Training Center Software

MA: Clases ES6

Javier Ribal del Rio

2025-12-13

Table of contents
1 Programacién orientada a objetos en JavaScript 1
2 Definicién de una clase 2

2.1 Sintaxis basica 2
3 Creacién de instancias 2
4 Métodos de instancia 2
5 Meétodos vs funciones flecha 3
6 Propiedades publicas 3
7 Getters y setters 3
8 Herencia (extends) 4
9 Sobrescritura de métodos 4
10 Uso de super en métodos 4
11 Métodos estaticos 4
12 Campos privados (#) 5
13 Clases y objetos literales 5
14 Clases prototipicas (pre-ES6) 6

Contenido

Repaso intensivo de clases en JavaScript (ES6+), orientado a usuarios con experiencia previa en progra-
macién y familiarizados con funciones, objetos y arrays.

1 Programacion orientada a objetos en JavaScript

JavaScript es un lenguaje basado en prototipos, pero desde ES6 introduce la sintaxis class, que:

o Es azicar sintactico sobre el sistema de prototipos
o Facilita la escritura y lectura de cédigo OO
e No convierte a JS en un lenguaje basado en clases clasicas

Javier Ribal del Rio Hyperloop UPV 1

4

Training Center Software

2 Definicion de una clase
2.1 Sintaxis basica

class Persona {
constructor (nombre, edad) {
this.nombre = nombre;
this.edad = edad;
}
+

e class: palabra clave

e constructor: método especial de inicializacién

e this: referencia a la instancia actual

3 Creacién de instancias

const pl = new Persona("Javier", 45);
const p2 = new Persona("Ana", 32);

e new crea un nuevo objeto

¢ Ejecuta autométicamente constructor

4 Meétodos de instancia

Los métodos se definen sin function y se comparten via prototipo.

class Persona {
constructor (nombre, edad) {
this.nombre = nombre;
this.edad = edad;
+

saludar() {

return "Hola, soy ${this.nombrel}";

}

cumple () {
this.edad++;

}
}

Uso:
pl.saludar();
pl.cumple();

Javier Ribal del Rio

Hyperloop UPV

4

5 Métodos vs funciones flecha

Training Center Software

No usar arrow functions como métodos de clase (salvo casos concretos):

class MalEjemplo {
metodo = () => {
console.log(this);
bs
}

e Rompe el modelo prototipico
e Mayor consumo de memoria

6 Propiedades publicas

Las propiedades se suelen declarar en el constructor:

class Coche {
constructor(marca, km = 0) {
this.marca = marca;
this.km = km;

}
}
Uso:
const ¢ = new Coche("Toyota");
c.km += 100;

7 Getters y setters

Permiten acceder como propiedades a légica encapsulada.

class Rectangulo {
constructor (ancho, alto) {
this.ancho = ancho;
this.alto = alto;
}

get area() {
return this.ancho * this.alto;

}

set escala(factor) {
this.ancho *= factor;
this.alto *= factor;

}
}
Uso:
const r = new Rectangulo(2, 3);
r.area; // 6

Javier Ribal del Rio Hyperloop UPV 3

4

Training Center Software

r.escala = 2;
r.area; // 24

8 Herencia (extends)

JavaScript soporta herencia simple.

class Empleado extends Persona {
constructor (nombre, edad, salario) {
super (nombre, edad);
this.salario = salario;

}

salarioAnual () {
return this.salario x 12;

}

e extends: herencia
e super(): llama al constructor padre (obligatorio)

9 Sobrescritura de métodos

class Empleado extends Persona {
saludar() {
return “Empleado: ${this.nombre}";
}
}

¢ Si el método existe en la clase hija, sobrescribe al del padre

10 Uso de super en métodos

class Empleado extends Persona {
saludar() {
return super.saludar() + " (empleado)";
}
}

Permite reutilizar logica del padre.

11 Métodos estaticos

Pertenecen a la clase, no a las instancias.

Javier Ribal del Rio Hyperloop UPV

4

Training Center Software

class Utilidades {
static suma(a, b) {
return a + b;

}
¥
Uso:
Utilidades.suma(2, 3);

No accesible desde instancias:

new Utilidades() .suma; // undefined

12 Campos privados (#)

Introducidos en ES2022.

class Cuenta {
#saldo = O;

ingresar(cantidad) {
this.#saldo += cantidad;

}

getSaldo() {
return this.#saldo;
}
}

e #saldo es realmente privado
¢ No accesible fuera de la clase

13 Clases y objetos literales

Esto:
const a = {

x: 1,

inc() { this.x++; }
k3

Es equivalente conceptualmente a una instancia tnica.
Usar class cuando:

o Hay multiples instancias
o Existe estado y comportamiento comin
e Se necesita herencia o abstraccién

Javier Ribal del Rio Hyperloop UPV

4

14 Clases prototipicas (pre-ES6)

Training Center Software

JavaScript siempre ha sido un lenguaje basado en prototipos. Antes de ES6, la creacién de objetos y
herencia se realizaba mediante funciones constructoras y el prototipo.

En este repaso no entraremos en detalle en este modelo.
Basta con saber que:

¢ Las clases ES6 no sustituyen al modelo prototipico
e Son una capa de abstraccién sobre él
e Todo el comportamiento sigue resolviéndose via prototipos

Para profundizar:

o https://developer.mozilla.org/es/docs/Web/JavaScript /Inheritance _and_the prototype_ chain

function Persona(nombre) {
this.nombre = nombre;

}

Persona.prototype.saludar = function () {
return this.nombre;

};

VS

class Persona {
constructor (nombre) {
this.nombre = nombre;

}

saludar() {
return this.nombre;

}

Javier Ribal del Rio Hyperloop UPV 6

https://developer.mozilla.org/es/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

	Programación orientada a objetos en JavaScript
	Definición de una clase
	Sintaxis básica

	Creación de instancias
	Métodos de instancia
	Métodos vs funciones flecha
	Propiedades públicas
	Getters y setters
	Herencia (extends)
	Sobrescritura de métodos
	Uso de super en métodos
	Métodos estáticos
	Campos privados (#)
	Clases y objetos literales
	Clases prototípicas (pre-ES6)

